Titolo:  An Approach to Multi-fidelity Optimization of Aeroengine Compression Systems
Autori: 
Data di pubblicazione:  2012
Abstract:  The aerodynamic design of turbomachinery presents the design optimisation community with a number of exquisite challenges. Chief among these are the size of the design space and the extent of discontinuity therein. This discontinuity can serve to limit the full exploitation of high-fidelity computational fluid dynamics (CFD): such codes require detailed geometric information often available only sometime after the basic configuration of the machine has been set by other means. The premise of this paper is that it should be possible to produce higher performing designs in less time by exploiting multi-fidelity techniques to effectively harness CFD earlier in the design process, specifically by facilitating its participation in configuration selection. The adopted strategy of local multi-fidelity correction, generated on demand, combined with a global search algorithm via an adaptive trust region is first tested on a modest, smooth external aerodynamic problem. Speed-up of an order of magnitude is demonstrated, comparable to established techniques applied to smooth problems. A number of enhancements aimed principally at effectively evaluating a wide range of configurations quickly is then applied to the basic strategy, and the emerging technique is tested on a generic aeroengine core compression system. A similar order of magnitude speed-up is achieved on this relatively large and highly discontinuous problem. A five-fold increase in the number of configurations assessed with CFD is observed. As the technique places constraints neither on the underlying physical modelling of the constituent analysis codes nor on first-order agreement between those codes, it has potential applicability to a range of multidisciplinary design challenges.
Handle:  http://hdl.handle.net/11584/116243
Tipologia: 4.1 Contributo in Atti di convegno

File in questo prodotto:
File Descrizione Tipologia Licenza  
TGhisu_C11.pdf  versione pre-print Administrator   Richiedi una copia

Questionario e social

Condividi su: