Title:  GPU-accelerated multi-objective optimization of fuel treatments for mitigating wildfire hazard
Internal authors: 
Issue Date:  2015
Journal: 
JOURNAL OF COMPUTATIONAL SCIENCE  
Abstract:  Fueltreatmentis considered a suitable way to mitigate the hazard related to potential wildfires on a landscape. However, designing an optimal spatial layout oftreatment units represents a difficult optimization problem. In fact, budget constraints, probabilistic nature of fire behaviour and complex interactions among the different fuel treatment patches, give rise to challenging search spaces on typical landscapes. In this study, we formulate the design problem in terms of a bi-objective optimization: minimizing both the extension of land characterized by high fire hazard and the cost of treatment. Then, we propose a computational approach that leads to a Pareto approximation set by exploiting an adapted version of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) together with General-Purpose computing on Graphics Processing Units (GPGPU). Using an application example based on a real landscape, we also show that the proposed methodology has the potential to effectively support the design of a suitable fuel treatment for a landscape.
URI:  http://hdl.handle.net/11584/116299
Type: 1.1 Articolo in rivista

Files in This Item:
File Description Type License  
TGhisu_J12.pdf  versione editoriale Administrator    Request a copy

Questionnaire and social

Share on: